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Abstract. Perturbative treatments of quantum fluctuations in Heisenberg helimagnets start- 
ing from the classical approximation fail because for S + m the spin wave is well defined only 
for a fixed helix wavevector Q. Recently an exact T-matrix evaluation of the contribution 
to the ground-state energy from long-wavelength quantum fluctuations near the classical 
ferromagnet-helix (F-H) transition line was performed in order to discuss the zero-tem- 
perature phase diagram in the j T J 3  plane, where j z  Q3) sets the scale of second (third) 
neighbour interactions in the basal plane. For the hexagonal lattice it was shown that 
quantum fluctuations could change from second to first order the F-H transition near the F- 
AF-H classical triple point, where AF denotes antiferromagnet. Here we give analogous 
calculations on a tetragonal lattice, which show unexpected lattice-dependent features. In 
addition to a behaviour similar to that found on the hexagonal lattice near the F-AF-H triple 
point, the change of the order of transition is found also on a semi-infinite part of the classical 
F-H phase boundary. 

1. Introduction 

Only recently have people realised that no systematic perturbative approach exists 
to account for quantum corrections concerning Heisenberg helimagnets [ 11. Troubles 
appear in evaluating quantum effects both for the phase diagram in parameter space 
and the spin-wave excitation energy spectrum, because in the classical approxima- 
tion (S -+ CO) normal modes are well defined only for a particular value of the helix 
wavevector, Q,, so that also the zero-point motion energy is well defined only when 
the helix wavevector, Q, actually is equal to Q,. Thus it is hard to assess directly 
the influence of quantum fluctuations on the true value of Q. In particular, a per- 
turbative expansion in 1/S leads to an imaginary magnon spectrum frequency in the 
neighbourhood of Q,. This indicates that the assumed ground state is not stable. A 
partial answer to the problem of quantum corrections to the classical phase diagram 
at T = 0 of a Heisenberg helimagnet was obtained by extrapolating the zero-point 
motion energy beyond the classical phase boundary [2]. 

A more controlled approach has been developed by Harris and Rastelli (HR) [3] 
to treat the neighbourhood of the ferromagnet-helix (F-H) phase boundary, where an 
expansion of the ground-state energy in powers of Q is realistic. In this case one 
can perform an exact T-matrix calculation [4] to all orders in 1/S within the small-Q 
expansion. This method has been applied to a hexagonal lattice within a model in 
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which exchange interactions with second and third nearest-neighbouring spins in the 
basal plane compete with ferromagnetic nearest-neighbour interactions [3]. Thereby the 
F-H transition at zero temperature was predicted to be discontinuous near the F-AF-H 
triple point of the classical phase diagram at T = 0, where AF denotes antiferromagnet. 
In contrast, the first order in 1/S approach predicts a continous F-H transition, leaving 
the classical result unaltered [2]. 

In this paper we perform an analogous calculation for a simple tetragonal lattice 
with in-plane competing interactions up to third-nearest neighbours. In analogy with 
the results for the hexagonal lattice, we find that quantum fluctuations can cause the 
F-H transition to become discontinuous, especially when the spin is greater than 1/2. 
This discontinuous region appears for a large range of plausible values of the exchange 
integrals. 

2. T-matrix treatment of quantum fluctuations 

The Hamiltonian of our model reads 

H = - J ,  C Si * Si+&, - J’ Si . Si+sf 

where 6, and 6’ are vectors joining site i with its neighbours of the crth shell and 
with its out-of-plane nearest neighbours NN, respectively. Here the N% in-plane J ,  and 
the out-of-plane J’ exchange couplings are positive, while the next-nearest neighbours 
(NNN) J ,  and the third-nearest neighbours (TNN) J ,  coupling can have either sign. If 
J2 and/or J3 are negative, the competition between exchange interactions can lead to 
helical states. On the other hand, there is no competition due to J ’ :  the spins in each 
basal plane have identical orientations. The phase diagram at T = 0 in the classical 
approximation [5] is shown in figure 1. As one can see, two collinear phases F and AF 
and two H phases (H1 and H2) exist. H1 and H2 are characterised by helix wavevectors 
parallel to 6 ,  and to 6,, respectively. 

Following HR we study the effect of quantum zero-point fluctuations in the vicinity 
of the F-H phase boundary. In such a calculation one writes the spin operators in 
terms of Bose creation and destruction operators by means of the Dyson-Maleev [6,7] 
transformation, in which the boson vacuum corresponds to a helix of wavevector Q, 
with aQ 4 1, where a is the in-plane lattice constant. Then one keeps only interaction 
potentials contributing to the T-matrix evaluation of the ground-state energy up to 
order Q4. 

Following this procedure, it is shown (HR) that the Hamiltonian (1) reduces to 

where 1 denotes k,, 2 denotes k,, etc and 

E,(Q) = -4J,NS2[1 + j, + j, + j’/2 - ;(aQ)’(l + 2j2 +4jJ 
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Figure 1. Zero-temperature phase diagram of the Heisenberg model on a tetragonal lattice 
showing the various phases, AF: F, HI, H2. The solid lines are phase boundaries for S = ‘13, 

the classical model. For the quantum model for j ’  = 0 (no interplane coupling) we show 
for S = 1/2  the point B,, the location of the H I  HZ F multicritical point, including quantum 
fluctuations, for S = 1 the point Al.  the limit of the regime B,-Al over which the F H I  
transition is continuous, and. for S = 1/2,  A2, the limit of the regime B,-A2 over uhich 
the F H? transition is continuous. Outside the interval A I - A ~  the F H transitions are 
discontinuous and occur inside the region of metastability of the F phase, as shown in 
figure 6 of [3]. 

with j ,  = J , / J , ,  j‘ = J ’ / J , ,  A ,  = 8 J 1 S f k r  where 

m=l  

Here 

and 

k ,  = ak, k ,  = a k ,  
k, = 2ak, k, = 2ak, k ,  = ckZ 

where c is the out-of-plane lattice constant. Also in equation ( 2 )  

k ,  = a ( k ,  + kL) k, = a(k ,  - kL)  

1 b(1) a B, = --8Jis[~ k ( Q,)’-t ibf’(aQ,)2 + i q k a 2 Q . Q , 1  

where 

by’ = [COS k ,  + j,(cos k ,  + COS k4) + 4j, cos k,] 
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b f )  = [cos k, + j2(cos k, + cos k4) + 4j, cos k6] (9) 

qk = $j2(cos k, - cos k4) (10) 

and V1,2,,,4 is the well known Dyson-Maleev [6,7] interaction potential, whose form 
(HR) is only needed for the special case k ,  ,= -k2 
for these values of momenta, denoted Vk,q, is given as 

k ,  and k ,  = -k ,  q, and 

7 

m = l  

The exact ground-state energy obtained by the T-matrix calculation within Q4 contri- 
butions reads [3] 

E G ( Q )  = Eo(Q) - (1/4) CB:/Ak + (1/8NS) CBkBqTk,q/(AkAq) (12) 
k kJl 

where Tk,q is the solution of 

which we write in the form 
I 

Tk,q = -4J1S !m(A-l)m,fl(l - cos km)(l - cos q,,) 
m,n=l  

where the matrix A is defined as 

= -!flDm,fl/(2s) (15) 

with 

Dm,fl = D,,  = ( 1 / 2 N ) x ( 1  -cosk,)(l -cosk,,)/ek. (16) 

For the tetragonal lattice these sums over the three-dimensional Brillouin zone can be 
reduced to two-dimensional integrals. Expressions for the D,,,n and the sum rules they 
obey are given in the Appendix. There we also obtain the following expression for the 
reduced ground-state energy, eG(Q)  = EG(Q)/(4JlS2N): 

k 

eG(Q) = eo + e2(aQ),  + ( ey )  + e:’ cos 46) ( u Q ) ~  

eo = -(1 + j ,  + j, + j’/2) 

(17) 

where 8 is the angle between Q and 6 ,  and 

(18) 

e2 = (1 + 2j2 + 4j,)/4 (19) 
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e y )  = -(1 - 4j2 + 16j3)/192 - [ I ,  - I ;  - (II - I[)/(2S)]/(l28S) (21) 

where I,, I& I ,  and I; are integrals given in equations (A17)-(A21) of the Appendix. 
We now discuss the significance of equation (17). 

boundary is defined by the vanishing of e2, i.e. it is given by 
First of all, the F-H phase 

1 + 2j2 + 4j3 = 0. (22) 

As for the hexagonal lattice, e2 has no quantum corrections. On the F-H phase 
boundary the term proportional to Q2 is missing and the ground-state energy reduces 
to 

e,(H1) = eo + ( e r )  + e:) cos40)a4Q4 (23) 

so that one obtains a helix of type H1 (0 = 0) for e:’ > 0, and that of type H2 (0 = n/4) 
for e a )  < 0. We note that the Hl-H2-F multicritical point is given by e:) = 0 and is 
shifted by quantum corrections from its classical position B,, to the shifted point B,, 
as shown in figure 1 for S = 1/2 and j’ = 0. Here and in the following we consider 
the value j’ = 0 , even if long-range order (LRO) is lost in the 2D case, because it is 
illustrative of the behaviour at very small interplane coupling. In table 1 we give the 
values of j, corresponding to point B,, for representative values of S and j’. Note that 
the location of point B, is only slightly dependent on j’, whereas it is a more sensitive 
function of S .  Notice that the shift from B,, to B, found by the T-matrix calculation 
amends the previous result obtained by a first order in 1/S approach where point B,, 
remained unshifted [2]. In a separate paper [SI we study in greater detail the nature of 
the H1-H2 transition. 

Table 1. Values of j 3  for which e:’ = 0 and e2 = 0 (which locates the Hl-H2-F multicritical 
point) for selected values of S and j’ .  The corresponding values of j 2  are given by equation 
(22). 

j ’  s = 1/2 S = l  S = 512 

0 -0.1550 -0.1375 -0.1288 
0.1 -0.1520 -0,1350 -0.1288 
1 -0.1412 -0.1323 -0.1277 

On the F-H phase boundary the ground-state energy, when minimised with respect 
to 0, will be 

eo + ( e r )  - l e f ’ l ) ( ~ Q ) ~  5 eo + e4t(aQ)4 

in which case one sees that the F-H transition will be discontinuous if e4t is negative. 
In the classical approximation e4t 2 0 over the whole F-HI phase boundary. 

However, when quantum fluctuations are included, we find that e4t is positive only 
over a restricted region of the F-HI phase boundary. In table 2 we give the values of j3 
for which e4t = 0 as function of S and j’ on the F-H1 phase boundary. 

In figure 1 point A, corresponds to e4t = 0 in the quantum limit S = 1, j’ = 0. In 
the region between points A, and the F-AF-H triple point a quantum helix (i.e. a helix 
stabilised by quantum fluctuations) of the type HI  should be stable so that a first-order 
F-H transition line may occur in this region, as we discuss below. The fact is analogous 



3826 A B Harris et a1 

Table 2. Values of j ,  for which qt = 0 on the F H I  phase boundary for selected values of 
S and j ' .  The corresponding values of j ,  are given by equation (22). 

j '  s = 1/2 S = l  S = 5/2 

0 -0.1 184 -0.0673 -0.0373 
0.1 -0.0893 -0.0524 -0.0279 
1 -0.0545 -0.0319 -0,0159 

to what happens on the hexagonal lattice, but on the tetragonal lattice the same occurs 
for helix H2 far from the triple point A. 

In table 3 we give the values of j ,  at which e4t, the coefficient of Q4 in equation 
(24), becomes negative on the F-H2 phase boundary. In figure 1 point A, corresponds 
to S = 1/2, j '  = 0. Notice that the Hamiltonian parameters involved have plausible 
magnitudes. The F-H2 phase transition is discontinuous in the interval where eqt is 
negative. 

Table 3. Values of 53 for which e 4  = 0 on the F HZ phase boundary for selected values of 
S and J ' .  The corresponding values of j ,  are given by equation (22). 

j '  s = 1/2 S = l  S = 5/2 

0 -0.2723 -0.4366 -0.7317 
0.1 -0.3834 -0.5558 -0.9053 
1 -0.5275 -0.7493 -1.2150 

The reason for the sign change of the Q4 coefficient near the triple point A and in 
the semi-infinite part of the F-H classical phase boundary from point A,, is the softness 
of the spin waves along the F-H transition line for j ,  --t 0 (A) and j ,  --+ -a. It is 
instructive to explicitly display the modes corresponding to these soft lines. Consider 
first the situation near the triple point A, where J, = -(1/2)J1. It is easy to verify 
that it costs no energy, starting from the antiferromagnetic structure to rotate each 
column of spins in figure 1 through an arbitrary angle Q,, where i labels the column, 
as shown in figure 2ia). This degree of freedom clearly corresponds to having zero- 
energy spin waves along the axis, k ,  = 0 where the y axis is along the direction of the 
columnar axis. A similar construction, shown in figure 2(b), shows that it also costs 
no energy, starting from the antiferromagnetic structure, to rotate each row of spins 
through an arbitrary angle O ) ,  where j labels the row. This degeneracy indicates that 
spin waves having k, = 0 have zero energy. In both cases the cost in energy is zero 
because the exchange field from two nearest neighbours is exactly balanced by that 
from four next-nearest neighbours. The discussion for the case j ,  -+ --a3 on the F-H 
phase boundary is very similar and is illustrated in figure 2(c) and 2(d). There one has 
that J ,  is negligible and J, = -(1/2)J2. But for these parameters the model can be 
considered to be two independent interpenetrating square lattices in which J, and J, 
play the roles previously played at point A by J ,  and J,. Because the square lattices 
here are rotated by 45", one has zero-energy spin waves over the lines k,  = fk, .  

The picture given above indicates that the F-H transition remains second order only 
for a finite interval (A1A2) of the infinite boundary line. A question arises whether or 
not this finite interval reaches the new triple point A' shifted by quantum effects. In 
order to assess the reliability of the long-wavelength quantum helix near the F-AF-H 
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Figure 2. Zero-energy modes at the triple point F A F - H i  are shown in ( a )  and ( h ) .  The 
spins of any NV column ( U )  or row ( h )  can rotate freely of an arbitrary angle with respect 
to the antiferromagnetic background. Zero-energy modes along the F- 1 1  transition line for 
j3 --t -x are shown in (c) and (d ) .  The spins of any NNN line can rotate freely of an 
arbitrary angle with respect to the ferromagnetic background. 

triple point, we evaluate quantum corrections to the AF ground state at leading order 
in 1/S, since in the AF configuration it is impossible to perform calculations to all 
orders in 1/S as for the helix with small-Q wavevectors. It is well known that quantum 
corrections shift the AF-F transition line towards the ferromagnetic region [2]. In order 
to estimate this shift we evaluate the ground-state energy of the antiferromagnetic 
phase in the ferromagnetic region, evaluating then the first-order quantum correction 
along the classical AF-F boundary. Figures 3(a-c) show the new AF-F transition lines 
for selected values of S for j ’  = 0, j ’  = 0.1 and j ’  = 1, respectively. The points along 
the F-H transition lines are obtained from the T-matrix calculations truncated at the 
leading order in 1/S. Their location is practically unchanged with respect to a T-matrix 
evaluation to all orders in 1/S (see table 1). These results seem to indicate that the AF 
phase should be able to prevent the occurence of the quantum helix only for S = 1/2 
for any interplane exchange coupling J’ .  

For any S 2 1 the existence of the quantum helix should be assured, independent 
of the value of j ’ .  In any case the quantum helix extends over a narrow range in the 
neighbourhood of the new triple point A’ whose exact location is at present an open 
question. On the contrary, a semi-infinite region exists where a quantum helix of the 
H2 kind is stable. This is a striking new result with respect to the hexagonal lattice, on 
which the existence of a H2 helix was prevented by the presence of a 120”-phase [3]. 

An interesting question arises about the kind of phase one has at finite temperature 
along the F-H transition line. It is easy to see that the order parameter 

k 

where S: is the component of the spin along the local quantisation axis, diverges on the 
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s ’  
i ’  i 

Figure 3. Phase diagrams for various values of j’ (i’ = 0 in (a ) ,  j’ = 0.1 in ( b )  and j‘ = I 
in ( e ) )  and S (the values of S, 512, 1, and 1/2, are indicated at the top of each curve) 
which show the relative locations of point A ) ,  the limit of continuous F-Hi transitions, here 
indicated by an open circle for S = 5/2, a cross for S = 1, and a full circle for S = 1/2, and 
the extrapolated (shown by dotted curves) limit of the F-AF phase boundary as calculated 
to lowest order in a 1/S expansion. For a given spin value, if the extrapolated limit lies 
outside the interval B,-A,, there will be a regime of discontinuous F - H I  phase transitions 
as shown in figure 6 of [3]. Otherwise, the F H I  transition is always continuous. 

whole 
like 

so tha 

nterval ALA2 because the spin-wave spectrum behaves for small k wavevectors 

(26) E,  2J,S[-j3a4(k: + k:) + (1/2)(1 +4j3)a 4 2 2  kxky  +j’(~k,)~] 

no LRO is expected at any finite temperature for three-dimensional 0’’ > 0) 
systems. Here we do not take the 2D-case into account because for j ’  = 0, LRO is lost 
at any finite temperature in the whole parameter space, whereas we are interested, in 
particular, in the peculiarities of the F-H transition line. Anyway, the divergence in 
equation (25 )  is logarithmic as for a 2D Heisenberg or X Y ferromagnet. We recall here 
that in a classical 2D Heisenberg ferromagnet the disordered phase is a paramagnetic 
one, whereas in a classical 2D X Y  ferromagnet it is a Kosterlitz-Thouless [9] phase, 
characterised by an algebraic decay of the correlation function. It is worth noticing 
that this unorthodox phase is prevented in the 2D Heisenberg model because of the 
presence of unbound vortices which, on the contrary, have a divergent cost in energy 
in the X Y  model. 

Moreover it has been shown [lo] that the X Y  version of the Hamiltonian (l),  treated 
in the classical (S + CO) harmonic approximation, exhibits a Kosterlitz-Thouless low- 
temperature phase on the F-H transition line. The same result has been obtained 
rigorously by Amit and co-workers [ l l ]  at the H1-H2-F triple point Bc,. We also 
notice that for the Heisenberg model the same algebraic decay of the correlation 
function is obtained in the spin-wave approximation on the F-H line. We believe 
that this indication could be realistic because there is no evidence of the existence of 
unbound vortex-like excitations in 3D systems. On the other hand Kawamura found 
that the classical antiferromagnetic Heisenberg model on both the triangular and the 
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hexagonal [12] lattice seems to show the same critical behaviour as the corresponding 
classical X Y antiferromagnet. This is in contrast with what happens in 2D for collinear 
configurations. 

3. Summary and conclusions 

In this paper we have studied the effects of long-wavelength quantum fluctuations on 
the ground-state energy of a tetragonal Heisenberg model with in-plane competing 
interactions up to third-nearest neighbours, in the neighbourhood of the F-H transition 
line. The approach we use is a T-matrix calculation exact within Q4 contributions as 
it has already been performed for the corresponding hexagonal model [3]. 

The main result we find is a change from second to first order of the F-H phase 
transition. This occurs in the neighbourhood of the F-AF-H triple point, owing 
to quantum fluctuations, as it happens on the hexagonal lattice [3]. However, the 
tetragonal helimagnet shows an unexpected quantum helix phase on a semi-infinite 
part of the classical F-H phase boundary in the phase space of competing exchange 
interactions shown in figure 1. On the hexagonal lattice this phase was prevented by 
the presence of the 120"-three sublattice phase. We stress that this region includes 
plausible values of the exchange interactions. 

Appendix 

Here we record explicit expressions for the D,,,n. 

-n 

Dll  = ( 2 2 - l  j o  Io dxdy (1 - c o s ~ ~ ) ~ / D ( x , y )  

D,,  = (2.n2)-' JnLn dxdy(1  -cosy)(l -cosx)/D(x,y) 

D13 = (2n2)-' L n l n  dxdy(1 -cosy)(l  -cosxcosy) /D(~,y)  

D15 = ( 2 7 ~ ~ ) ~ '  J ' J n  dxdy(1 -cosy)(l  -cos2y)/D(x,y) 

D,, = ( 2 ~ ~ ) ~ '  LnLn dxdy(1  -cosy)(l -cos2x)/D(x,y) 

D,, = (2n2)-' LnLn dxdy [(l - C O S X C O S ~ ) ~  + (~ inxs iny )~] /D(x ,y )  

D,, = ( 2 7 ~ ~ ) ~ '  InLn dx dy [(l - cos x cos y), - (sin x sin Y)~] /D(X,  y )  



3830 A B Harris et a1 

D,, = (2n2)- '  L*Ln dxdy(1  -cos2y)(l - c o s x c o s y ) / D ( x , y )  (A81 

n R  ,372 

D,, = ( 2 7 ~ ~ ) ~ '  .I, do dxdqJ(1 - c 0 ~ 2 y ) ~ / D ( x , y )  

D,, = (2n2)- '  JRLn d x d y ( 1  - - c o s 2 x ) ( 1  - c o s 2 y ) / D ( x , y )  (A 10) 

where 

D ( x , y )  = {~(x,y)[f(x,y) + j ' ] } 1 i 2  

~ ( x ,  y )  = 1 - (1/2)(cos x + cos y )  + j,(l - cos x cos y) + j ,  [l  - (1/2)(cos 2 x  + cos 2 y ) ] .  

(A 12) 

For symmetry reasons one has 

The following sum rules hold. 

2D,,  + 2j2D3, + 2j,D5, + j 'D77 = 1. (A1 7 )  

Thus the D,, (m  = 1, .  . . ,7)  are obtained from equations (A14)-(A17) through equations 
(A1)-(AlO). Equation (12)  then becomes 

f&(&) = Eo(Q) -4J,Siv{a4(Q: + QP)[Io - r , / (2S)1 /32+a4Q2,QS[I ;  - I { / W ) 1 / 1 6 ]  
(A181 

where 

I ,  = (4n2)-' LRLn dxdy b : ( x , y ) / D ( x , y )  

1; = (4n2)-' LnLR dxdy [b,(x,y)b,(y,x) - 8Cj2sinxsiny)*]/D(x,y) ('420) 

I ,  = 
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The explicit expressions of 1;') and 12 for the tetragonal lattice read 

1;') = ( 4 7 ~ ~ ) ~ '  L' L' dx dy b ,  (x, y)(1 -- cos y ) / D ( x ,  y) 

1;" + p + 2j  Ii" + j 1 ( 1 )  
3 (  + I:')) + j'Ijl) = 0. 

Using these formulae one obtains equation (17) of the text. 
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